the hapFLK method

María Inés Fariello, **Simon Boitard**, Magali San Cristobal, Bertrand Servin

INRA, GenPhySE, Toulouse simon.boitard@toulouse.inra.fr

Doctoral course "Environmental genomics", May 23-27, 2016.

イロン イボン イモン イモン 一日

1/52

Outline

1 Selective sweeps and how to detect them

2 Methods

- Single marker FLK test
- Haplotype-based hapFLK test

3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives

5 Training session

Outline

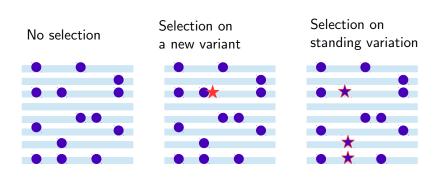
1 Selective sweeps and how to detect them

2 Methods

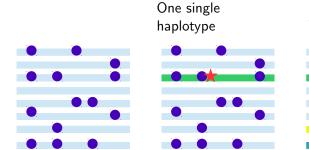
Single marker FLK test

Haplotype-based hapFLK test

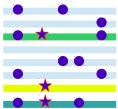
3 Results


- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives

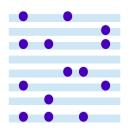
5 Training session

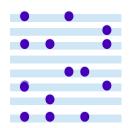

- Most genomic regions are neutral, but some of them are (or have been) under selection (natural or artificial).
- Detecting the regions under selection is important for theory (evolution) and applications (medicine, agronomy).

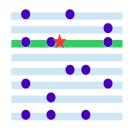
4 / 52

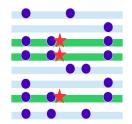

- Genome wide scans for selection now possible from dense genotyping (SNP chips) or sequencing (NGS) data.
- Focus on positive (adaptative) selection.

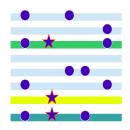
Genetic diversity around a positively selected mutation

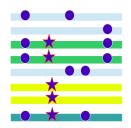


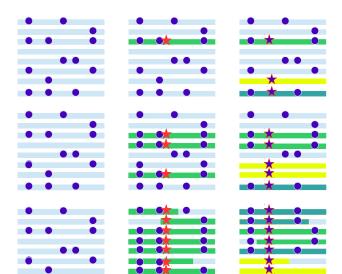

Several haplotypes


Genetic diversity around a positively selected mutation


Random drift evolution




One haplotype increases in frequency


Several haplotypes increase in frequency

7/52

Genetic diversity around a positively selected mutation

イロト イポト イヨト イヨト

Different sweep signatures

Sweep scenario	partial	hard	soft
Allele frequencies	elevated	extreme	intermediate / extreme
Haplotype frequencies	elevated for one haplotype	one fixed haplotype	elevated for several haplotypes
		< □ >	< □ > < E > < E > E - り への

Detection power may be increased by:

- Comparing neutral vs selected populations.
- Account for population history, in particular their hierarchical structure (FLK).
- Using haplotype information (hapFLK).

Outline

1 Selective sweeps and how to detect them

2 Methods

- Single marker FLK test
- Haplotype-based hapFLK test

3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives
- 5 Training session

Outline

1 Selective sweeps and how to detect them

2 Methods

Single marker FLK test

Haplotype-based hapFLK test

3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives
- 5 Training session

 $p = (p_1, \dots, p_i, \dots, p_n)$: allele frequencies at one SNP in several populations.

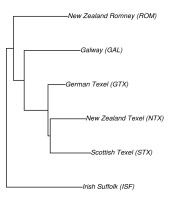
 \overline{p} and s_p^2 : observed mean and variance of p.

$$F_{ST} = rac{s_p^2}{\bar{p}(1-\bar{p})}$$

- H₀: "neutral evolution" (genetic drift)
 vs H₁: "positive selection in one (or more) population ".
- H_0 rejected if F_{ST} too large.

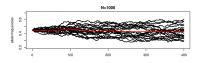
$$T_{LK}^{\ell} = \frac{n-1}{\bar{F}_{ST}} F_{ST}^{\ell}$$

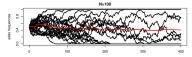
• T_{LK} distribution under H_0 is χ^2 if :

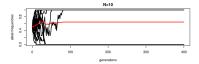

$$Var(p_i) = F_{ST} p_0(1 - p_0), \quad Cov(p_i, p_j) = 0$$

Only true if populations have a star like phylogeny with equal population sizes.

FLK test (Bonhomme et al, 2010)


Extension of F_{ST} accounting for


- differences in effective size between populations.
- differences in correlations between population pairs.

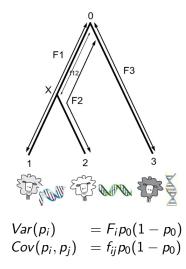


(first estimated from genome wide data)

Genetic drift in one population

$$\mathbb{E}(p(t)) = p_0 \quad (1)$$

Var(p(t)) = F_t p_0(1-p_0) \quad (2)

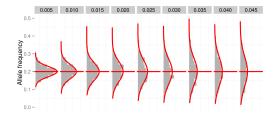

Wright-Fisher fixation index

$$F_t = 1 - \left(1 - \frac{1}{2N}\right)^t \approx \frac{t}{2N}$$

N: effective population size

Extension to several populations with arbitrary phylogeny

The distribution of p under H_0 can be modelled using the kinship matrix F.


$$F_{3} = 1 - \left(1 - \frac{1}{2N_{3}}\right)^{t} \approx \frac{t}{2N_{3}}$$
$$f_{12} = 1 - \left(1 - \frac{1}{2N_{12}}\right)^{t_{12}} \approx \frac{t_{12}}{2N_{12}}$$

Kinship matrix

$$F = \left(\begin{array}{rrrr} F_1 & f_{12} & 0 \\ f_{12} & F_2 & 0 \\ 0 & 0 & F_3 \end{array}\right)$$

$$ightarrow$$
 Var(p) = Fp₀(1 - p₀)

Normal approximation

• Provided F_t is small, we can model:

 $p(t) \sim \mathcal{N}(p0, F_t p0(1-p0))$

See Nicholson et al. (2002).

FLK test (Bonhomme et al. 2010)

bi-allelic markers (SNP)

$$T_{F-LK} = (\mathbf{p} - \hat{p}_0 \mathbf{1}_n)' \widehat{Var(\mathbf{p})}^{-1} (\mathbf{p} - \hat{p}_0 \mathbf{1}_n)$$
$$\hat{p}_0 = \frac{\mathbf{1}'_n F^{-1} \mathbf{p}}{\mathbf{1}'_n F^{-1} \mathbf{1}_n}, \quad \widehat{Var(\mathbf{p})} = F \hat{p}_0 (1 - \hat{p}_0)$$

multi-allelic markers

A > 2 allèles

- **p**₀ vector of size A.
- **p** vector of size $n \times A$.
- $Var(\mathbf{p})$ can be written as a function of F and $\mathbf{p} \mathbf{p}_0$

イロト 不得下 イヨト イヨト 二日

19 / 52

Distribution under H_0 is $\chi^2((A-1)(n-1))$

FLK test (Bonhomme et al. 2010)

bi-allelic markers (SNP)

$$T_{F-LK} = (\mathbf{p} - \hat{p}_0 \mathbf{1}_n)' \widehat{Var(\mathbf{p})}^{-1} (\mathbf{p} - \hat{p}_0 \mathbf{1}_n)$$
$$\hat{p}_0 = \frac{\mathbf{1}'_n F^{-1} \mathbf{p}}{\mathbf{1}'_n F^{-1} \mathbf{1}_n}, \quad \widehat{Var(\mathbf{p})} = F \hat{p}_0 (1 - \hat{p}_0)$$

multi-allelic markers

A > 2 allèles

- **p**₀ vector of size A.
- **p** vector of size $n \times A$.
- $Var(\mathbf{p})$ can be written as a function of F and $\mathbf{p} \mathbf{p}_0$

19 / 52

Distribution under H_0 is $\chi^2((A-1)(n-1))$

The Reynolds genetic distance D (Reynolds, Weir and Cockerham, 1983) between two populations i and j has expectation:

$$E(\mathcal{D}_{ij}) = \frac{F_i + F_j}{2}$$

see Laval et al. (2002).

- The matrix of Reynolds distances is computed over many $(\sim 10^4)$ SNPs. Assumes majority of them are neutral.
- The population tree is built using the neighbour joining algorithm on this matrix.

1 Selective sweeps and how to detect them

2 Methods

Single marker FLK test

Haplotype-based hapFLK test

3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives
- 5 Training session

Cumulating single SNP tests

Windowing approach average / max of SNP statistics over genome windows (*Weir et al. 2005*)

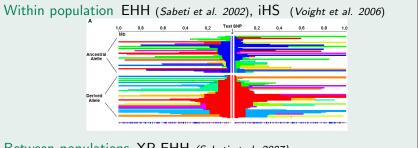
Composite likelihood Product of SNP likelihoods within genome windows (XP-CLR : *Chen et al. 2010*)

Bayesian hierarchical models autoregressive component in the model (*Guo et al. 2009*)

Choice of window size? fixed?

Bayesian methods computer intensive (MCMC).

Cumulating single SNP tests


Windowing approach average / max of SNP statistics over genome windows (*Weir et al. 2005*)

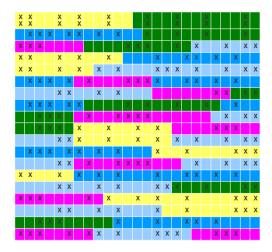
Composite likelihood Product of SNP likelihoods within genome windows (XP-CLR : *Chen et al. 2010*)

Bayesian hierarchical models autoregressive component in the model (*Guo et al. 2009*)

Choice of window size? fixed? Bayesian methods computer intensive (MCMC).

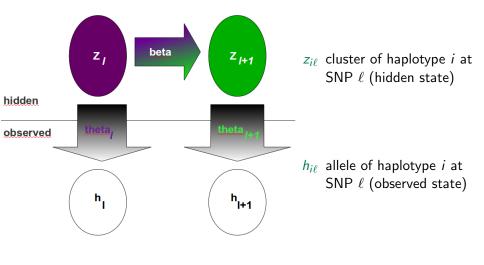
Using haplotype length

Between populations XP-EHH (Sabeti et al. 2007)

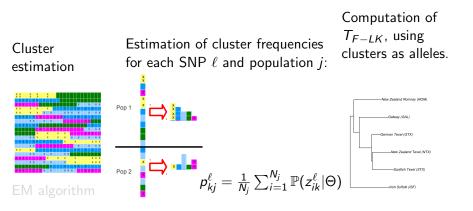

Limited to two populations.

FLK test at the haplotype level

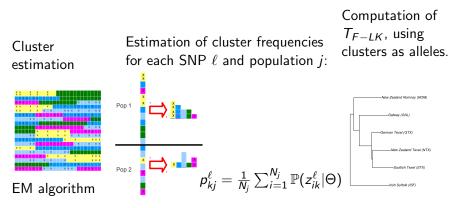
- Define haplotypes using a continuous model over the genome (no fixed window)
- 2 FLK test from these haplotypes (multi-allelic version)


Local haplotype clustering (Scheet and Stephens 2006)

Genetic similarity between individuals evolves continously over the genome due to ancestral recombinations.


Example: 10 individuals lines: haplotypes columns: SNPs

Hidden Markov Model


・ロト <
同 ト <
言 ト <
言 ト 、
言 か へ
の へ
26 / 52

hapFLK test (Fariello et al, 2013)

Average of T_{F-LK} over EM iterations provides hapFLK

hapFLK test (Fariello *et al*, 2013)

Average of T_{F-LK} over EM iterations provides hapFLK

FLK test at the haplotype level

- Define haplotypes using a continuous model over the genome (no fixed window)
- 2 FLK test from these haplotypes (multi-allelic version)
- Any number of populations.
- Accounts for populations hierarchical structure / unequal population sizes.
- Genotype data allowed.
- Missing data allowed.

Outline

1 Selective sweeps and how to detect them

2 Methods

Single marker FLK test

Haplotype-based hapFLK test

3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives

5 Training session

Outline

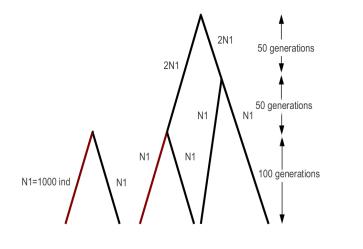
1 Selective sweeps and how to detect them

2 Methods

Single marker FLK test

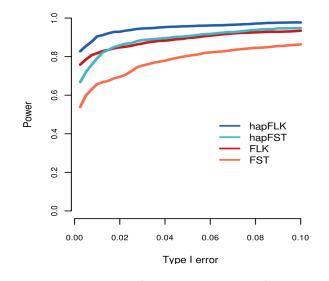
Haplotype-based hapFLK test

3 Results


Simulations

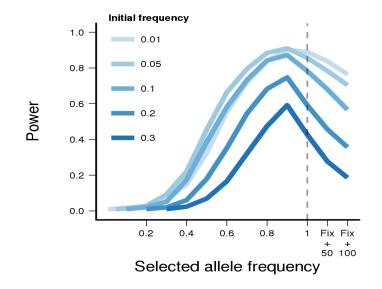
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives

5 Training session

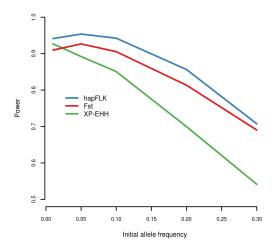

Simulation results

Simulation of 5Mb segments with 100 SNPs (dense genotyping) or 300 SNPs (full sequencing) with MAF > 5%.

□ ▶ 《♬ ▶ 《볼 ▶ 《볼 ▶ 볼 ' ♡ (~ 31 / 52


Increased power for haplotype based tests

Hard sweep scenario, 4 populations, genotyping data,


32 / 52

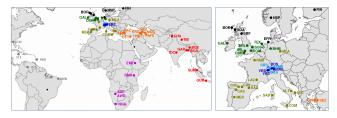
Soft and incomplete sweeps can be detected

2 populations, genotyping data.

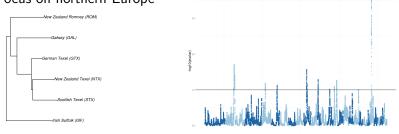
Increased power for soft sweeps compared to XP-EHH

1 Selective sweeps and how to detect them

2 Methods

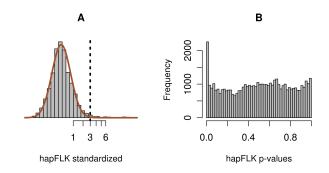

- Single marker FLK test
- Haplotype-based hapFLK test

3 Results


- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives

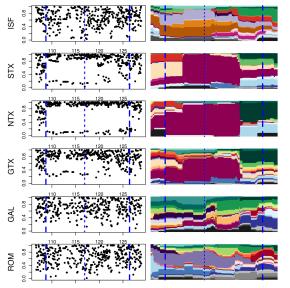
The Sheep HapMap data

74 populations, 50K SNPs (Kijas et al, 2012)



Focus on northern Europe

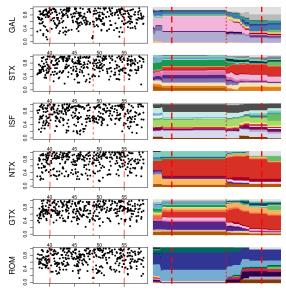
■ - クへへ 36 / 52


Computation of p-values

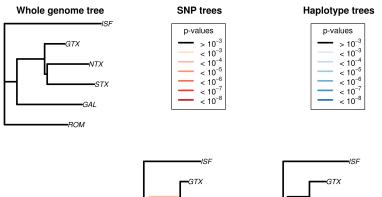
- *hapFLK* approximately gaussian, with some outliers.
- \Rightarrow Normalization using robust mean and variance estimates (function *rlm* in R)

Hard sweep signal in Texel Sheep

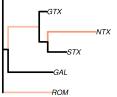
allele frequencies cluster frequencies

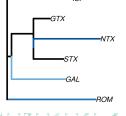


Candidate mutation in MSTN


Soft / Incomplete sweep signal in New Zealand Sheep

allele frequencies cluster frequencies




- One cluster at relatively high frequency in New Zealand Texel (NTX)
- Two clusters at fixation in New Zealand Rommey (ROM).

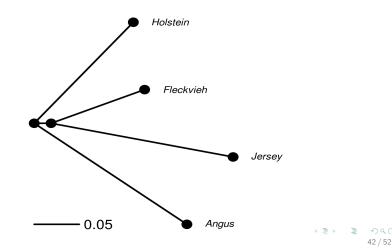
New Zealand breeds are the ones under selection

OAR 14

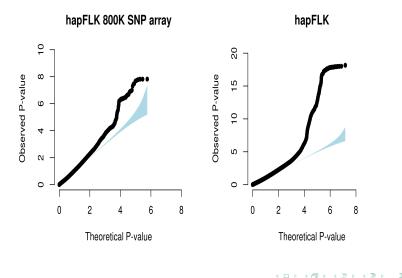
1 Selective sweeps and how to detect them

2 Methods

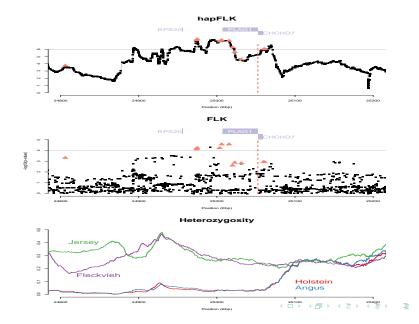
- Single marker FLK test
- Haplotype-based hapFLK test


3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)
- 4 Conclusions and Perspectives


The 1000 bulls genome project, run2

■ 234 sequences from 4 breeds (90 used).


29 millions bi-allelic variants (SNPs and indels)

Increased power from NGS data

PLAG1 region - locate causal mutation

1 Selective sweeps and how to detect them

2 Methods

- Single marker FLK test
- Haplotype-based hapFLK test

3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)

4 Conclusions and Perspectives

Conclusion

The hapFLK approach:

- Detection of positive selection from multi-population samples.
- Accounts for population size heterogeneity and hierarchical structure of populations.
- Uses haplotype information.
- \rightarrow increased detection power
- Other advantages:
 - No need for sliding window.
 - Run from unphased genotype data, missing data allowed.
 - Soft and incomplete sweeps can be detected.
- Limitations:
 - Pure drift model.
 - Outlier approach.

References

- Methods:
 - M. Bonhomme, C. Chevalet, B. Servin, S. Boitard, J. Abdallah, S. Blott, M. San Cristobal (2010). Detecting selection in population trees: the Lewontin and Krakauer test extended. *Genetics* 186: 241-26.
 - M. I. Fariello, S. Boitard, H. Naya, M. SanCristobal, B. Servin (2013).
 Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. *Genetics* 193: 929-941.
- Applications:
 - M.I. Fariello, B. Servin, G. Tosser-Klopp, R. Rupp, C. Moreno, International Sheep Genome Consortium, M. San Cristobal and S. Boitard (2014). Selection Signatures in Worldwide Sheep Populations. *PLoS ONE* 9(8), e103813.
 - P.F. Roux, S. Boitard, Y. Blum et al (2015). Combined QTL and Selective Sweep Mappings with Coding SNP Annotation and Cis-eQTL Analysis Revealed PARK2 and JAG2 as New Candidate Genes for Adiposity Regulation. G3 5(4) 517-529.
 - S. Boitard, M. Boussaha, A. Capitan, D. Rocha and B. Servin (2016). Uncovering Adaptation from Sequence Data: Lessons from Genome Resequencing of Four Cattle Breeds. *Genetics* 203: 433-450.

1 Selective sweeps and how to detect them

2 Methods

- Single marker FLK test
- Haplotype-based hapFLK test

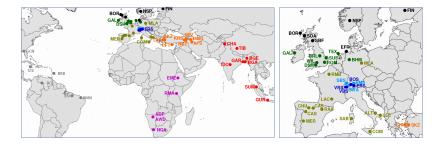
3 Results

- Simulations
- Application to 50K chip data (sheep)
- Application to NGS data (cattle)

4 Conclusions and Perspectives

The hapflk software

- Builds and plots population trees (using R packages)
- Performs FLK and hapFLK tests on SNP data
- Computes associated p-values
- Plots cluster frequencies


Technical information

Webpage:

https://forge-dga.jouy.inra.fr/projects/hapflk

- Free software (GPL).
- Binaries for Linux 64bits and MacOSX 10.6+
- Source package available (requires python, numpy, scipy, C compiler).
- Other needs for additional routines: R with ape, phangorn and ggplot2 packages, python statsmodels package.

Example data: sheep from Northern Europe

Kijas *et al.* (2012) PLoS Biology 6 Populations + Outgroup (Soay), 388 individuals, 50K SNPs Available at http://www.sheephapmap.org

Before diving in ...

Remember assumptions underlying the neutral model:

- Population tree
- Pure drift model (no mutations, no admixture)
- Small F_i (say < 0.2)
- This means
 - Discard strongly bottleneck-ed or admixed populations
 - Discard low frequency variants (at the meta-population level), likely to have appeared after population spit.
- Perform a diversity analysis before:
 - Population structure (STRUCTURE, PCA, treemix ...) to remove outliers.
 - Within population kinship between individuals to identify a set of "unrelated" individuals

- **1** Compute kinship matrix and FLK.
- 2 Perform hapFLK test chromosome by chromosome.
- 3 Merge hapFLK results in a single file.
- 4 Compute hapFLK p-values.
- **5** Call significant regions and plot p-values.
- 6 Annotate interesting regions (e.g. myostatin region on chr 2).
 - Plot haplotype cluster frequencies.
 - Plot local population trees.