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What is population genetics?



e Studying genetic variation in populations. Two aspects have
been considered in the models:

*  Predictive: predicting the future composition of a population
from its current composition

e Retrospective: understanding what determined the current
composition of a population



Data analysis relies on:

Descriptive statistics (characterizes the structure of the data)

Define groups of individuals, quantify the distances among

mall




Data analysis relies on:

Inference methods (requires evolutionary models)
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e Define groups of individuals, quantify the distances among
them

e Infer population history: since how long populations have
diverged? Do they exchange migrants? Is there evidence of
admixture between some populations? Etc.



What is a genetic marker?



A mutation (single nucleotide
polymorphism, or SNP) in the MC1R
gene (melanocortin-1 receptor): TT
homozygotes at position 478 tend to
have freckles and red hairs

A 32bp deletion in the CCR5 gene
(CCR5-A32) confers resistance to
HIV-1

Microsatellites markers (short
tandem repeats, e.g.:
AGAGAGAGAGAG...), dispersed in

the genomes




Until the 1960’s, only the phenotypic
differences can be observed: this is the golden
age of ecological genetics

In the 1960’s, protein electrophoresis is
developed in a number of (non-model) species |

In the 1980’s, PCR and Sanger sequencing are
used to sequence DNA (both mitochondrial
and nuclear)




Detecting differences in genotypes

e Restriction enzymes (discovered in the 1970’s)
are used to develop RFLP markers

* Inthe 1990’s: genotyping of microsatellite
markers

* More recently: next generation sequencing
(NGS)
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Publication of the first two human
genome assemblies in 2001

2001 (human genome): 7 years for 310° S
2007 (horse genome): 18 months for 3 10° S
In 2013, a resequenced human genome costs 1,000 S

1,000 genome projects in humans (McVean et al. 2011), rice
(McNally et al. 2014), cattle (Hayes et al. 2014)

Marker availability is no more limiting...



 We use genetic markers to analyse the distribution of genetic
polymorphism within individuals, within populations and among
populations...

* An “ideal” genetic markers should:

* be polymorphic!

* have a simple and known heredity!

* be co-dominant (yet few methods exist for dominant)
* be neutral (only to infer demography)



What is the distribution of
genotypes in populations?



Male gametes

With panmixia (random union of gametes), Hardy-
Weinberg equilibrium is reached in one generation:

Female gametes
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* You may check that
allele frequencies are
constant



For a bi-allelic locus, in a sample of size N:

Expected Observed
AA Np? N,
Aa 2Npqg N,
aa NG? N,

The chi-square test statistic X measures the difference between
the observed and the expected numbers. This statistic is
distributed as a X with 1 degree of freedom (number of
genotypes — number of constraints):

= E (expected - observed)2

genotypes

expected



genotype frequency
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10,000 SNPs from the HapMap CEU European and YRI African
populations fit pretty well to expectations




* panmixia: gametes encounter each other randomly

* Allindividuals reproduce simultaneously and then die (no
overlapping generations)

* |solated populations: no migration
* Infinite population size
* No mutation

e No selection



* Assortative mating
 Mating systems (e.g., selfing, clonality, etc.)

e Population structure

e Selection



* OQOver all populations, the observed frequencies are:

AA E; pin
Aa E’.l_l 2piqi /n
aa 4 in

* If the population was panmictic, the expected
frequencies would be (with p = EHP,- /n):

AA D’

Aa  2pg

aa ;12



The overall proportion of heterozygotes is:

H, =E:l=12piqi/n=22?=l(pi—pl.z)/n
_ n _ n 2
_221-:1191'/” 2Ei=1pi /n
=2p-2(0,+p")
=2pq-20,
=2pg(1-0/ p7)

Which is less than the expected proportion in a
panmictic unit. We note F; =a§ / pg, where Of, IS
the variance of p between populations, and hence:

Ho = 213‘7(1_FST)



Combined HapMap CEU + YRI (Europeans+Africans)
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e Testing the null hypothesis that
“genes (or genotypes) are drawn from A
the same distribution in all ‘
populations” using exact tests (see,
e.g., Genepop)
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* Testing the departure from a null 8 J L
distribution of F¢; generated by .
random permutathnS Of multilocus -0.005 0.000 o.oosFSTo.mo 0.015 0.020

genotypes across populations (see,
e.g., Genetix or Fstat)



With genotype data from L biallelic loci for K populations, the
likelihood of an individual’s genotype g, in population k is
(assuming HWE):

L(g, Ipop k) = p, if g, = AA
L(g, Ipop k)= 2pk,l (1- pk,l) if g, = Aa
L(g, Ipop k)= (1-p,,)’ if g, = aa

(where p, , is the frequency of allele A in population k)

Assuming that the L loci are independent, the likelihood that
the individual belongs to pop k reads:

] L
L(ind.|pop k) = HHL(g, | pop k)



Using Bayes’ rule, one can also compute the
posterior probability that the individual comes
from population k:

L(ind. | pop k)P(pop k)
3" L(ind. | pop k)P(pop k)

P(pop klind.) =

P(pop k) is the prior probability. With no prior
knowledge, assume P(pop k) =1/ K



* Phylogeography and population structure of an ecotonal

marsupial, Bettongia tropical
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e Evidence for significant structure: most individuals are

assigned to their sampling location

Credits: Pope et al. (2000) Molecular Ecology 9: 2041-2053
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e Start with a random assignment of individuals to groups
(clusters). Given assignments probabilities, the allele
frequencies at all loci are computed for each population

* Given these allele frequencies, each individual is reassigned to
population k with probability

* These steps are iterated many times. In a Bayesian
framework, prior distributions are defined for allele
frequencies (e.g., a beta distribution)

A %
Africa Mid.East Europe C.S.Asia E.Asia %, e

Credits : Li et al. (2008) Science 319: 1100-1104
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The data consist of N individuals
genotyped at L bi-allelic SNPs. One
individual’s genotype data at a locus
takes value 0, 1 or 2 (corresponding,
e.g., to the number of copies of the
reference allele).

Principal component analysis (PCA)
of this data N x L matrix covers the
major axes of genotype variance in
the sample

PCA reduces the dimension of the
dataset. Descriptive approach (but
see McVean 2009)

Credits : Novembre et al. (2008) Nature 456: 98-101



How do evolutionary forces affect
the distribution of polymorphisms
in populations?



Buri’s experiment (1956):
107 Drosophila populations,
each of which was funded o .
with 16 individuals
heterozygote for the ‘brown
eye’ mutation (bw’>)
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As time goes on, the variation within populations decreases



The Wright-Fisher model

Ronald A Fisher Sewall Wright

e Consider a haploid, isolated population of size N

e Consider a biallelic locus (alleles A and a). Let’s note p|[t] the
frequence of A and g[t] = (1 — p[t]) the frequency of g at time t

e No mutation

e Each generation, each individual produces a large number of
gametes, (same expectation = neutrality)

e Draw N gametes to make the next generation (random draw in
a gametic urn of infinite size)



e |n a finite and constant-size population, each gene does not
provide exactly one copy of itself in the next generation, but
rather a variable number of copies
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e Attime (t+1), draw N genes in a infinite gametic urn made
of alleles A at frequency p[t] and alleles a at frequency q|[t]

e The random variable X[t + 1] that gives the number of A

copies follows a binomial distribution, with parameters N
and p[t] = X[t] / N:

Pr(X[t +1] = k) = (]Z)p[t]k (1 _p[t])N—k



o letY[t+1]=X[t+ 1]/ N =p[t+1], bethe frequency of A
at generation (t + 1):

) E(X][\;H]) .

X[t+1]
N

E(Y[t+1])=E(p[t+1])= E(

e |n expectation, the frequency is constant from one
generation to the next, but the variance increases as N
decreases:

t]

N2

N

) _V(X[e+1])  plrigle]



Genetic diversity (Hs)
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32 predicts less populations that are fixed, as

The model with 2N =

compared to the observations: the variance of reproductive

success is about 70% larger than what is supposed in the Wright-

Fisher’s model



e Effective population size (denoted N,) is defined as the size of
an ideal Wright-Fisher’s population (*) where genetic drift
would have the same intensity (**) as compared to the
population under scrutiny

e (*) constant-size, randomly mating population, hermaphrodite
individuals, no fitness differences between allalic types, etc.

e (**) same rate of drift, same increase in inbreeding, same
increase in the variance of allele frequencies, etc.



e Many definitions, and therefore many estimators of effective
population size:

e |nbreeding effective size (related to the rate of increase in
inbreeding)

e Variance effective size (related to the rate of allele frequency
change)

e Coalescent effective size (related to the asymptotic rate of
coalescence of pairs of genes)



Many factors influence effective
population size:

reproductive system: selfing reduces
effective size

class-structure: e.g., biased sex-ratio
reduces effective size

age-structure: e.g., diapause or
dormancy tend to increase effective
size

variance of reproductive success
reduces effective size

N., as a fraction of autosomal N,
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e The loss of diversity due to drift might compensated by new
mutations

e A useful way to characterize the amount of polymorphism in
populations is to use probabilities of genetic identity

e 2 genes drawn at random are identical if one of them (or both)
have mutated:

1 1
ﬁ*(l‘ﬁ)Qm
e Aequilibrium:

1
0=
1+4Nu

H=1-0~

Q[t+1]=

)

4Nu 6
1+4Nu 1+6




If we consider a structured population (geography, age-classes, sex,
etc.), we can always define probabilities of gene identity within a

class (Q,,) and between classes (Q,)

We can then use a generic definition of F-statistics, which depends
on both identities, to measure the differentiation between classes:

F Qw_Qb
1-0,

For a spatially structured population (infinite island model), we get
at equilibrium:

y(1-m)’
yﬂ—mf+2NPeyO—mf]
1
1+ 4Nm

FST=




How to characterize the
distribution of polymorphisms?



Allele frequency

Evolution of allele frequency Distribution after 250 generations
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* Evolution of allele frequency in an island model (6 demes, N =
1000, F; = 0.001): 50 genes sampled in one deme



Evolution of allele frequency Distribution after 250 generations
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* Evolution of allele frequency in an island model (6 demes, N =
200, Fs; = 0.25): 50 genes sampled in one deme



Deriving the allele frequency distribution f(p,t) from the
Wright-Fisher model is a complex problem...

Solution: approximating the Wright-Fisher (discrete) process by
a continuous (diffusion) approximation (assuming N tends to
infinity), which satisfies the forward Kolmogorov equation:

of (pt) __aM(p)f(p.t) 1 9V(p)f(p.1) oo

2

ot op 2 op _

Where M(p) and V(p) are the 15t and the 2"
moments of change in p per unit of time <
(i.e., the drift and the diffusion coefficients) "t

h h h

1 T T
x=nh x x+h

Figure 8.3.1. Diagram to show the
meaning of terms in the Kolmogorov
forward (Fokker Planck) equation as
applied to population genetics. (From
Kimura, 1955).



In the Wright-Fisher model with mutation: M(p) =-vp + (1 - p)u

and V(p) =p (1 —p) / N [uis the mutation rate from ato A; vis

the mutation rate from A to a]

Stationary distribution:
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e Diffusion theory provides distributions of allele frequencies in
simple models. It is usually restricted to stationary solutions

e An alternative way to characterize the distribution of variation
in populations is given by coalescent theory



The coalescent
]
]
]
]
)\
AN

O 0_Q. 0
<o BN A\ 4
38 B8N
ov&«ol\g iZeY\sghe),
NS 4%..10&%«9; q
N 888,83
0 B0 060N\
35885 6 B

o»«»ﬂmw/’wlmw«w%( \

The genealogy of a sample

() L

XK ARO/ O
Sy e leiNe ZetNens
R OGNS
s &\s e s gleYis O

10

The genealogy of the population

In neutral models, mutations have no impact on genealogies of
genes; therefore the mutation process can be decoupled from

the genealogical process



e The branch lengths (coalescence times) are exponentially
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Population size N(t)

Population size N(t)
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* Coalescent theory provides a probabilistic model for
gene genealogies

* |t may simplify the analysis of population genetics
models and/or their interpretation

* ltislargely used to simulate efficiently the genetic
variation (simulations of gene samples rather than full
populations)

* It paves the way for new techniques to infer population
parameters



How to infer parameters of
interest from polymorphism data?



Maximum likelihood approaches are based on a stochastic model
for the evolution of gene frequencies in populations, specified by
some parameters

The aim is to estimate these parameters from the data D (the
allele counts at different molecular markers)

To that end, one computes the likelihood of the parameters, given
the observed data D (i.e, the probability of the data given those
parameter values)



e In anisland model with 2 alleles (A and a), the distribution of
the frequency of allele A in a deme is given by (Wright, 1940) :

_ (M)
)= Hom)r(ma )

an—l(l _ X)M(l—n)—l

e This is the probability that the frequency x of allele A in a deme
that receives M = 4Nm migrants per generation

e The above formula assumes large N, and small m (diffusion
approximation)
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e The probability to observe k alleles A in a n-sized sample of a

population where the frequency of A is x, is given by (binomial
distribution):

n .
Pr(k alleles| x) = (k)xk(l —x)""
e Integrating over the distribution of allele frequencies:

Pr(k alleles) = [ Pr(k alleles | x)(x)dx



e The likelihood of a n-sized sample with k alleles A is therefore
given by the following distribution (beta-binomial):

(M) (M\T(Mr+k) (M1 -7x)+(n-k))
Pr(k alleles) = F(M N n) (k) F(Myr) F(M(l - n))

e This is for one deme and one locus: with multiple demes and
loci, multiply the likelihoods (conditional independence of
demes and loci)

e Characterize the values of M and r that maximize this
likelihood function (maximum likelihood estimates)



* Let’s simulate some data (at a single locus), from 10
sampled demes with:

e M=4Nm=2andmt=0.5

 The data (counts of alleles A and a among 100 sampled
genes) are:

A: 92 88 71 76 60 12 21 94 70 74
a: 8 12 29 24 40 88 79 6 30 26
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e We may not only calculate point estimates (maximum
likelihood) but also compute confidence intervals (based on

likelihood ratios):
L
LR = -2log| —

max

e The likelihood ratio (LR) is chi-squared distributed with k
degrees of freedom (k being the number of parameters in the
model)

e So a parameter value is included in the confidence interval if LR
is above a given bound, which is given by the chi-square
distribution with k degrees of freedom.



Likelihood ratio
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Limits: it is sometime very difficult (not to say impossible) to
maximize the likelihood that way (too many parameters,
complicated mathematical expression, etc.)

Yet, some recent attempts to achieve maximum-likelihood
inference in relatively complex models (the likelihood of the
allele frequency spectrum is computed numerically using

diffusion approximation)
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Credits: Gutenkunst et al. (2009) PLoS Genet 5(10): e1000695



In Bayesian statistics, it is assumed that the
parameters have a probability distribution

From Bayes’ inversion formula:

P(DI®)P(G)  P(DIB)P(O)

[P(D1©)P(©)d6 -~ P(D)
/7

Constant, which only depends upon the data

P(®|D)=

P(® | D) x L(©:D)P(O)
— —

Likelihood Prior distribution

To sample from the posterior distribution of the
parameters, a Markov chain is constructed, with
stationary distribution P(® | D)



>

Log (likelihood)

Image courtesy of Peter Beerli, Florida State University, USA.

(D) In the parameter space, start at @
(2) Propose a new value ©' following q(@ —> @')

@ Accept this new value with probability:
L(®D )P(©')¢(0'—=0)
L(®;D ) P(®) q(©—0"

h=min|1,

@ Go to (1)

Credits : Excoffier et Heckel (2006) Nature Reviews Genetics 7 : 745-758



Markov chain Monte Carlo
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Posterior density

Posterior density

Joint posterior
distribution of the
parameters

Comparison with the
likelihood: stochastic
process, influenced by
convergence and
mixing properties of
the Markov chains...
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For most models, there is no mathematical expression for the
likelihood of the parameters:

L(®;D) = P(D 1©)

Yet, it is still possible to compute the probability of observing the
data, conditionally on the parameters and the genealogy (using

coalescent theory):
P(D10.G)

Therefore, the likelihood can expressed as a sum over all possible
genealogies (Felsenstein’s equation):

L(@D) =P(D16) = [ P(D10,G)P(G 10)dG

R —

Mutation Coalescent theory




An important point to consider: genealogies are considered as
nuisance parameters: these are important quantities in the
computation, that we do not try/need to estimate

Although we are dealing with trees, this approach is very different
from phylogenetic approaches (where trees are the objects we
want to estimate)



* MsVAR: a demographic model with population size change: Beaumont
(1999) Genetics 153: 2013-2029

* An application example with orang-utans: Goossens et al. (2006) PLoS
Biology 4(2): e25

N . .
o | S 7 FE : Forest exploitation
ﬂ S - F :Farmers
N1 0 HG : Hunter-gatherers
o g ~ /
‘C_>. | - yod
z 2 o
2 c
3 g 9-
2 4 N
o
\}. ) priors ; ]
o | R A S
° T T | T I T ° | I I ! T I
o 2 4 6 8 10 0 2 4 6 8 10

log(population size)

log(time)
Figure 3. Time since the Population Collapse

Figure 2. Ancestral and Present Population Sizes



An alternative with
complex models

(when the likelihood is

impossible to
compute):

Approximate Bayesian

Computation:
Beaumont et al.

(2002) Genetics 162:

2025-2035

Prior distribution of
model parameter 8

y [ |
(2) Given a certain model,
@ Compute summary statistic perform n simulations, each
 from observational data 9, 9, 8, 86, with a parameter drawn from
the prior distribution
Simulation 1 Simulation 2 Simulation 3 Simulation n
@ Compute summary A /\ /\ f
statistic i, for each H, H, M Hy
simulation
?
p(u.b) <€ X v X v
@ Based on a distance p(*,") e
and a tolerance <, decide for -
each simulation whether its o
summary statistic is sufficiently A
ié;v to that of the observed Posterior distribution of &) Approximate the posterior
model parameter 6 distribution of © from the distribution
of parameter values 6, associated
with accepted simulations.

A

Sunnaker et al. (2013) PLoS Computational Biology 1002803



Approximate Bayesian Computation (ABC)

* A spatially explicit model
to characterize the origins
of the “lactase persistent” 0w o oo 20°E 30°E
phenotype in Europe, o '
using both genetic and
archeological data:

60°N

55°N — 55°N
4

50°N

50°N

* The origin of the co-
evolution between
lactase persistence and 0N - - Tl o
dairy culture traces back k-
to 7,500 yrs ago
somewhere between
Central Europe and the
Balkans

45°N — ) ‘ ) 45°N

Itan et al. (2009) PLoS Computational Biology 1000491



* Likelihood-based approaches make full use of the data (not limited to
some summary statistics)

 They provide point estimates and confidence intervals, but also the
likelihood (frequentist approaches) or the full posterior distribution

(Bayesian approaches)

* These approaches may be much more difficult to implement
(depending on whether the likelihood can or cannot be derived)

* Approximate Bayesian Computation (ABC) may be an alternative



