

« Environmental Genetics » doctoral course ABIES-GAIA

Models in Population Genetics: a Reminder (or an Overview?)

Renaud Vitalis

Centre de Biologie pour la Gestion des Populations INRA ; Montpellier E-mail : <u>vitalis@supagro.inra.fr</u>

What is population genetics?

- Studying genetic variation in populations. Two aspects have been considered in the models:
- **Predictive**: predicting the future composition of a population from its current composition
- **Retrospective**: understanding what determined the current composition of a population

Population genetics

- Data analysis relies on:
- **Descriptive statistics** (characterizes the structure of the data)
- Define groups of individuals, quantify the distances among them

Population genetics

- Data analysis relies on:
- Inference methods (requires evolutionary models)

Credits : Fagundes et al. (2007) PNAS 104: 17614-17619

- Define groups of individuals, quantify the distances among them
- Infer population history: since how long populations have diverged? Do they exchange migrants? Is there evidence of admixture between some populations? Etc.

What is a genetic marker?

Types of genetic data

- A mutation (*single nucleotide polymorphism*, or SNP) in the *MC1R* gene (melanocortin-1 receptor): TT homozygotes at position 478 tend to have freckles and red hairs
- A 32bp deletion in the CCR5 gene (CCR5-Δ32) confers resistance to HIV-1
- Microsatellites markers (short tandem repeats, e.g.: AGAGAGAGAGAGAG...), dispersed in the genomes

Detecting differences in genotypes

 Until the 1960's, only the phenotypic differences can be observed: this is the golden age of ecological genetics

 In the 1960's, protein electrophoresis is developed in a number of (non-model) species

 In the 1980's, PCR and Sanger sequencing are used to sequence DNA (both mitochondrial and nuclear)

Detecting differences in genotypes

 Restriction enzymes (discovered in the 1970's) are used to develop RFLP markers

In the 1990's: genotyping of microsatellite markers

 More recently: *next generation sequencing* (NGS)

The NGS revolution

• Publication of the first two human genome assemblies in 2001

- 2001 (human genome): 7 years for 3 10⁹ \$
- 2007 (horse genome): 18 months for 3 10⁶ \$
- In 2013, a resequenced human genome costs 1,000 \$
- 1,000 genome projects in humans (McVean et al. 2011), rice (McNally et al. 2014), cattle (Hayes et al. 2014)
- Marker availability is no more limiting...

• We use genetic markers to analyse the distribution of genetic polymorphism within individuals, within populations and among populations...

- An "ideal" genetic markers should:
- be polymorphic!
- have a simple and known heredity!
- be **co-dominant** (yet few methods exist for dominant)
- be **neutral** (only to infer demography)

What is the distribution of genotypes in populations?

Allele and genotype frequencies

• With panmixia (random union of gametes), Hardy-Weinberg equilibrium is reached in one generation:

		Α ρ[t]	a q[t]
Male gametes	Α ρ[t]	ΑΑ ρ[<i>t</i>]²	Aa p[t]q[t]
	a q[t]	aA q[t]p[t]	aa q[t] ²

Female gametes

AA	$D[t+1] = p[t]^2$
Aa	H[t+1] = 2 p[t] q[t]
aa	$R[t+1] = q[t]^2$

 You may check that allele frequencies are constant • For a bi-allelic locus, in a sample of size *N*:

	Expected	Observed
AA	Np ²	<i>N</i> ₁
Aa	2Npq	<i>N</i> ₂
аа	Nq ²	N ₃

• The chi-square test statistic X measures the difference between the observed and the expected numbers. This statistic is distributed as a χ^2 with 1 degree of freedom (number of genotypes – number of constraints):

$$\chi^2 = \sum_{\text{genotypes}} \frac{(\text{expected - observed})^2}{\text{expected}}$$

HapMap YRI (Africans)

HapMap CEU (Europeans)

 10,000 SNPs from the HapMap CEU European and YRI African populations fit pretty well to expectations

Credits : Graham Coop (https://gcbias.org/2011/10/13/population-genetics-course-resources-hardy-weinberg-eq/)

- panmixia: gametes encounter each other randomly
- All individuals reproduce simultaneously and then die (no overlapping generations)
- Isolated populations: no migration
- Infinite population size
- No mutation
- No selection

- Assortative mating
- Mating systems (e.g., selfing, clonality, etc.)
- Population structure
- Selection

The Wahlund effect (1923)

• Over all populations, the **observed** frequencies are:

• If the population was panmictic, the **expected** frequencies would be (with $\overline{p} = \sum_{i=1}^{n} p_i / n$):

AA
$$\overline{p}^2$$
Aa $2\overline{p}\overline{q}$ aa \overline{q}^2

The Wahlund effect (1923)

• The overall proportion of heterozygotes is:

$$\begin{split} H_{\rm O} &= \sum_{i=1}^{n} 2p_i q_i \,/\, n = 2 \sum_{i=1}^{n} (p_i - p_i^2) \,/\, n \\ &= 2 \sum_{i=1}^{n} p_i \,/\, n - 2 \sum_{i=1}^{n} p_i^2 \,/\, n \\ &= 2 \overline{p} - 2(\sigma_p^2 + \overline{p}^2) \\ &= 2 \overline{p} \overline{q} - 2\sigma_p^2 \\ &= 2 \overline{p} \overline{q} (1 - \sigma_p^2 \,/\, \overline{p} \overline{q}) \end{split}$$

• Which is less than the expected proportion in a panmictic unit. We note $F_{\text{ST}} = \sigma_p^2 / \overline{pq}$, where σ_p^2 is the variance of p between populations, and hence:

$$H_{\rm O} = 2\,\overline{p}\overline{q}(1 - F_{\rm ST})$$

Combined HapMap CEU + YRI (Europeans+Africans)

 10,000 SNPs from the HapMap CEU European and YRI African populations fit pretty well to expectations

Credits : Graham Coop (https://gcbias.org/2011/11/05/population-genetics-course-resources-f-statistics/)

- Testing the null hypothesis that "genes (or genotypes) are drawn from the same distribution in all populations" using exact tests (see, e.g., Genepop)
- Testing the departure from a null distribution of F_{ST} generated by random permutations of multilocus genotypes across populations (see, e.g., Genetix or Fstat)

With genotype data from L biallelic loci for K populations, the likelihood of an individual's genotype g₁ in population k is (assuming HWE):

 $L(g_l | \text{pop } k) = p_{k,l}^2 \quad \text{if } g_l = AA$ $L(g_l | \text{pop } k) = 2p_{k,l}(1 - p_{k,l}) \quad \text{if } g_l = Aa$ $L(g_l | \text{pop } k) = (1 - p_{k,l})^2 \quad \text{if } g_l = aa$

(where $p_{k,l}$ is the frequency of allele A in population k)

• Assuming that the *L* loci are independent, the likelihood that the individual belongs to pop *k* reads:

$$L(\text{ind.} | \text{pop } k) = \prod_{l=1}^{L} L(g_l | \text{pop } k)$$

• Using Bayes' rule, one can also compute the posterior probability that the individual comes from population *k*:

$$P(\text{pop } k | \text{ind.}) = \frac{L(\text{ind.} | \text{pop } k)P(\text{pop } k)}{\sum_{k=1}^{K} L(\text{ind.} | \text{pop } k)P(\text{pop } k)}$$

P(pop k) is the prior probability. With no prior knowledge, assume P(pop k) = 1 / K

Assignment methods

• Phylogeography and population structure of an ecotonal marsupial, *Bettongia tropical*

 Evidence for significant structure: most individuals are assigned to their sampling location

Credits: Pope et al. (2000) Molecular Ecology 9: 2041-2053

Clustering

- Start with a random assignment of individuals to groups (clusters). Given assignments probabilities, the allele frequencies at all loci are computed for each population
- Given these allele frequencies, each individual is reassigned to population *k* with probability
- These steps are iterated many times. In a Bayesian framework, prior distributions are defined for allele frequencies (e.g., a beta distribution)

Credits : Li et al. (2008) Science 319: 1100-1104

Principal component analysis

- The data consist of *N* individuals genotyped at *L* bi-allelic SNPs. One individual's genotype data at a locus takes value 0, 1 or 2 (corresponding, e.g., to the number of copies of the reference allele).
- Principal component analysis (PCA) of this data N x L matrix covers the major axes of genotype variance in the sample
- PCA reduces the dimension of the dataset. Descriptive approach (but see McVean 2009)

Credits : Novembre et al. (2008) Nature 456: 98-101

How do evolutionary forces affect the distribution of polymorphisms in populations?

Evolution in finite populations

 Buri's experiment (1956): 107 Drosophila populations, each of which was funded with 16 individuals heterozygote for the 'brown eye' mutation (bw⁷⁵)

• As time goes on, the variation within populations decreases

Ronald A Fisher

Sewall Wright

- Consider a haploid, isolated population of size N
- Consider a biallelic locus (alleles A and a). Let's note p[t] the frequence of A and q[t] = (1 p[t]) the frequency of a at time t
- No mutation
- Each generation, each individual produces a large number of gametes, (same expectation = neutrality)
- Draw *N* gametes to make the next generation (random draw in a gametic urn of infinite size)

• In a finite and constant-size population, each gene does not provide exactly one copy of itself in the next generation, but rather a variable number of copies

Credits : Graham Coop (https://gcbias.org/2015/02/11/figures-of-genetic-drift/)

- At time (*t*+1), draw *N* genes in a **infinite gametic urn** made of alleles *A* at frequency *p*[*t*] and alleles *a* at frequency *q*[*t*]
- The random variable X[t + 1] that gives the number of A copies follows a binomial distribution, with parameters N and p[t] = X[t] / N:

$$\Pr\left(X[t+1]=k\right) = \binom{N}{k} p[t]^k \left(1-p[t]\right)^{N-k}$$

Let Y[t + 1] = X[t + 1] / N = p[t + 1], be the frequency of A at generation (t + 1):

$$E\left(Y[t+1]\right) = E\left(p[t+1]\right) = E\left(\frac{X[t+1]}{N}\right) = \frac{E\left(X[t+1]\right)}{N} = p[t]$$

 In expectation, the frequency is constant from one generation to the next, but the variance increases as N decreases:

$$V(Y[t+1]) = V(p[t+1]) = V\left(\frac{X[t+1]}{N}\right) = \frac{V(X[t+1])}{N^2} = \frac{p[t]q[t]}{N}$$

Founder effects in humans

 Heterozygosity decreases as the distance from Africa increases: Prugnolle *et al.* (2005) Curr. Biol. 15: R159-R160; Liu *et al.* 2006 Am. J. Hum. Genet. 79: 230-237

 The model with 2N = 32 predicts less populations that are fixed, as compared to the observations: the variance of reproductive success is about 70% larger than what is supposed in the Wright-Fisher's model

Effective population size

- Effective population size (denoted N_e) is defined as the size of an ideal Wright-Fisher's population (*) where genetic drift would have the same intensity (**) as compared to the population under scrutiny
- (*) constant-size, randomly mating population, hermaphrodite individuals, no fitness differences between allalic types, etc.
- (**) same rate of drift, same increase in inbreeding, same increase in the variance of allele frequencies, etc.

- Many definitions, and therefore many estimators of effective population size:
- Inbreeding effective size (related to the rate of increase in inbreeding)
- Variance effective size (related to the rate of allele frequency change)
- Coalescent effective size (related to the asymptotic rate of coalescence of pairs of genes)

Effective population size

- Many factors influence effective population size:
- reproductive system: selfing reduces effective size
- class-structure: e.g., biased sex-ratio reduces effective size
- age-structure: e.g., diapause or dormancy tend to increase effective size
- variance of reproductive success reduces effective size

Interaction of evolutionary forces: drift and mutation

- The loss of diversity due to drift might compensated by new mutations
- A useful way to characterize the amount of polymorphism in populations is to use probabilities of genetic identity
- 2 genes drawn at random are **identical if** one of them (or both) have **mutated**:

$$Q[t+1] = \left[\frac{1}{2N} + \left(1 - \frac{1}{2N}\right)Q[t]\right]\left(1 - \mu\right)^2$$

• A equilibrium:

$$\begin{aligned} \mathcal{Q} &\approx \frac{1}{1+4N\mu} \\ H &= 1 - \mathcal{Q} \approx \frac{4N\mu}{1+4N\mu} = \frac{\theta}{1+\theta} \end{aligned}$$

Interaction of evolutionary forces: drift and migration

- If we consider a structured population (geography, age-classes, sex, etc.), we can always define probabilities of gene identity within a class (Q_w) and <u>b</u>etween classes (Q_b)
- We can then use a generic definition of *F*-statistics, which depends on both identities, to measure the differentiation between classes:

$$F \equiv \frac{Q_w - Q_b}{1 - Q_b}$$

• For a spatially structured population (infinite island model), we get at equilibrium:

$$F_{\rm ST} = \frac{\gamma (1-m)^2}{\gamma (1-m)^2 + 2N \left[1-\gamma (1-m)^2\right]}$$

$$\approx \frac{1}{1+4Nm}$$

How to characterize the distribution of polymorphisms?

Evolution of allele frequency in an island model (6 demes, N = 1000, F_{ST} = 0.001): 50 genes sampled in one deme

Evolution of allele frequency

Distribution after 250 generations

Evolution of allele frequency in an island model (6 demes, N = 200, F_{ST} = 0.25): 50 genes sampled in one deme

- Deriving the allele frequency distribution f(p,t) from the Wright-Fisher model is a complex problem...
- Solution: approximating the Wright-Fisher (discrete) process by a continuous (diffusion) approximation (assuming *N* tends to infinity), which satisfies the forward Kolmogorov equation:

$$\frac{\partial f(p,t)}{\partial t} = -\frac{\partial M(p)f(p,t)}{\partial p} + \frac{1}{2}\frac{\partial^2 V(p)f(p,t)}{\partial p^2}$$

Where M(p) and V(p) are the 1st and the 2nd moments of change in p per unit of time (i.e., the *drift* and the *diffusion* coefficients)

Figure 8.3.1. Diagram to show the meaning of terms in the Kolmogorov forward (Fokker-Planck) equation as applied to population genetics. (From Kimura, 1955).

- In the Wright-Fisher model with mutation: M(p) = -v p + (1 p)μ and V(p) = p (1 - p) / N [μ is the mutation rate from a to A; v is the mutation rate from A to a]
- Stationary distribution:

$$\frac{\partial f(p,t)}{\partial t} = -\frac{\partial M(p)f(p,t)}{\partial p} + \frac{1}{2} \frac{\partial^2 V(p)f(p,t)}{\partial p^2} = 0$$

$$f(p,t) \sim C p^{2N\nu-1} (1-p)^{2N\mu-1}$$

• i.e., a beta distributions with parameters 2Ny and 2Ny

0.5

0

0.2

0.4

0.6

0.8

1

- Diffusion theory provides distributions of allele frequencies in simple models. It is usually restricted to stationary solutions
- An alternative way to characterize the distribution of variation in populations is given by coalescent theory

 In neutral models, mutations have no impact on genealogies of genes; therefore the *mutation* process can be *decoupled* from the *genealogical* process

The coalescent

The branch lengths (coalescence times) are exponentially distributed (k is the number of lineages, time is scaled with the population size N)

The coalescent

 Population size changes affect the shape of coalescent trees: "star-shaped" genealogies for expanding populations, and "shallow" genealogies for declining ones

- Coalescent theory provides a **probabilistic model** for gene genealogies
- It may simplify the analysis of population genetics models and/or their interpretation
- It is largely used to simulate efficiently the genetic variation (simulations of gene samples rather than full populations)
- It paves the way for new techniques to infer population parameters

How to infer parameters of interest from polymorphism data?

- Maximum likelihood approaches are based on a stochastic model for the evolution of gene frequencies in populations, specified by some parameters
- The aim is to estimate these parameters from the data *D* (the allele counts at different molecular markers)
- To that end, one computes the likelihood of the parameters, given the observed data *D* (i.e, the probability of the data given those parameter values)

Likelihood in the island model: Wright's formula (1940)

• In an island model with 2 alleles (A and a), the distribution of the frequency of allele A in a deme is given by (Wright, 1940) :

$$\phi(x) = \frac{\Gamma(M)}{\Gamma(M\pi)\Gamma(M(1-\pi))} x^{M\pi-1} (1-x)^{M(1-\pi)-1}$$

- This is the probability that the frequency *x* of allele *A* in a deme that receives *M* = 4*Nm* migrants per generation
- The above formula assumes large *N*, and small *m* (diffusion approximation)

Likelihood in the island model: Wright's formula (1940)

• The probability to observe k alleles A in a n-sized sample of a population where the frequency of A is x, is given by (binomial distribution):

$$\Pr(k \text{ alleles } \mid x) = \binom{n}{k} x^{k} (1-x)^{n-k}$$

• Integrating over the distribution of allele frequencies:

$$\Pr(k \text{ alleles}) = \int \Pr(k \text{ alleles} \mid x)\phi(x)dx$$

Maximum likelihood

• The likelihood of a *n*-sized sample with *k* alleles A is therefore given by the following distribution (beta-binomial):

$$\Pr(k \text{ alleles}) = \frac{\Gamma(M)}{\Gamma(M+n)} \binom{n}{k} \frac{\Gamma(M\pi+k)}{\Gamma(M\pi)} \frac{\Gamma(M(1-\pi)+(n-k))}{\Gamma(M(1-\pi))}$$

- This is for one deme and one locus: with multiple demes and loci, multiply the likelihoods (conditional independence of demes and loci)
- Characterize the values of *M* and π that maximize this likelihood function (maximum likelihood estimates)

- Let's simulate some data (at a single locus), from 10 sampled demes with:
- M = 4Nm = 2 and $\pi = 0.5$
- The data (counts of alleles A and a among 100 sampled genes) are:

A :	92	88	71	76	60	12	21	94	70	74
a :	8	12	29	24	40	88	79	6	30	26

Maximum likelihood

• Likelihood profile for one parameter, considering the maximum likelihood for the other parameter...

Likelihood ratios

• We may not only calculate point estimates (maximum likelihood) but also compute confidence intervals (based on likelihood ratios):

$$LR = -2\log\left(\frac{L}{L_{\max}}\right)$$

- The *likelihood ratio (LR)* is chi-squared distributed with *k* degrees of freedom (*k* being the number of parameters in the model)
- So a parameter value is included in the confidence interval if *LR* is above a given bound, which is given by the chi-square distribution with *k* degrees of freedom.

Confidence intervals

 Were this procedure to be repeated on multiple samples, the 95%CI would contain the true value of the parameter 95% of the time (frequentist interpretation)

Maximum likelihood

- Limits: it is sometime very difficult (not to say impossible) to maximize the likelihood that way (too many parameters, complicated mathematical expression, etc.)
- Yet, some recent attempts to achieve maximum-likelihood inference in relatively complex models (the likelihood of the allele frequency spectrum is computed numerically using diffusion approximation)

Credits: Gutenkunst et al. (2009) PLoS Genet 5(10): e1000695

Bayesian methods

- In Bayesian statistics, it is assumed that the parameters have a probability distribution
- From Bayes' inversion formula:

$$P(\Theta \mid D) = \frac{P(D \mid \Theta) P(\Theta)}{\int P(D \mid \Theta) P(\Theta) d\Theta} = \frac{P(D \mid \Theta) P(\Theta)}{P(D)}$$
Constant, which only depends upon the data
$$P(\Theta \mid D) \propto L(\Theta; D) P(\Theta)$$
Likelihood Prior distribution

• To sample from the *posterior* distribution of the parameters, a Markov chain is constructed, with stationary distribution $P(\Theta \mid D)$

Metropolis-Hasting's algorithm

Image courtesy of Peter Beerli, Florida State University, USA.

- (1) In the parameter space, start at Θ
- (2) Propose a new value Θ' following $q(\Theta \rightarrow \Theta')$

(3) Accept this new value with probability: $h = \min\left(1, \frac{L(\Theta'; D)}{L(\Theta; D)} \frac{P(\Theta')}{P(\Theta)} \frac{q(\Theta' \to \Theta)}{q(\Theta \to \Theta')}\right)$ (4) Go to (1)

Credits : Excoffier et Heckel (2006) Nature Reviews Genetics 7 : 745-758

Markov chain Monte Carlo

Posterior density

Joint posterior distribution of the parameters

 Comparison with the likelihood: stochastic process, influenced by convergence and mixing properties of the Markov chains...

Markov chain Monte Carlo

- Marginal posterior distributions of the parameter
- Point estimates
 from the mean, or
 the mode, or the
 median
- A 95% credible interval defines an interval where the probability that the parameters lies equals 95%

Felsenstein's equation

• For most models, there is **no mathematical expression** for the likelihood of the parameters:

 $L(\Theta; D) = P(D \mid \Theta)$

• Yet, it is still possible to compute the probability of observing the data, conditionally on the parameters and the genealogy (using coalescent theory):

 $P(D | \Theta, G)$

• Therefore, the likelihood can expressed as a sum over all possible genealogies (Felsenstein's equation):

$$L(\Theta; D) = P(D | \Theta) = \int_{G} P(D | \Theta, G) P(G | \Theta) dG$$

Mutation Coalescent theory

- An important point to consider: genealogies are considered as **nuisance parameters**: these are important quantities in the computation, that we do not try/need to estimate
- Although we are dealing with trees, this approach is very different from phylogenetic approaches (where trees are the objects we want to estimate)

- MSVAR: a demographic model with population size change: Beaumont (1999) Genetics 153: 2013-2029
- An application example with orang-utans: Goossens *et al.* (2006) *PLoS Biology* 4(2): e25

Figure 2. Ancestral and Present Population Sizes

Figure 3. Time since the Population Collapse

Approximate Bayesian Computation (ABC)

 An alternative with complex models (when the likelihood is impossible to compute):

Approximate Bayesian

(2002) Genetics 162:

Computation:

2025-2035

Beaumont *et al.*

•

Prior distribution of Observational data model parameter θ Given a certain model, Compute summary statistic perform n simulations, each θ. µ from observational data --- θ with a parameter drawn from the prior distribution Simulation 1 Simulation 2 Simulation 3 Simulation n ... ③ Compute summary μ_1 μ_2 statistic µ, for each μ_{a} μ_n simulation ρ(μ ,μ) ≤ ε х х ④ Based on a distance ρ(·.·) and a tolerance s. decide for each simulation whether its summary statistic is sufficiently close to that of the observed ⑤ Approximate the posterior Posterior distribution of data. distribution of 0 from the distribution model parameter 0 of parameter values θ, associated with accepted simulations.

Sunnaker et al. (2013) PLoS Computational Biology e1002803

Approximate Bayesian Computation (ABC)

- A spatially explicit model to characterize the origins of the "lactase persistent" phenotype in Europe, using both genetic and archeological data:
- The origin of the coevolution between lactase persistence and dairy culture traces back to 7,500 yrs ago somewhere between Central Europe and the Balkans

Itan et al. (2009) PLoS Computational Biology e1000491

- Likelihood-based approaches make full use of the data (not limited to some summary statistics)
- They provide point estimates and confidence intervals, but also the likelihood (frequentist approaches) or the full posterior distribution (Bayesian approaches)
- These approaches may be much more difficult to implement (depending on whether the likelihood can or cannot be derived)
- Approximate Bayesian Computation (ABC) may be an alternative