INTRODUCTION TO ANIMAL BREEDING

Lecture Nr 4

The efficiency of selection The selection programmes

Etienne Verrier INA Paris-Grignon, Animal Sciences Department Verrier@inapg.fr

The genetic gain and its parameters Comparison of the different selection methods

- The multiple trait selection
- Selection programmes
- Summary

From one generation to the other

No genetic change

Representation of a selection step

1) The genetic variance of the trait

Population Nr 1

Population Nr 2

More progress is expected within Population Nr 1 than within Population Nr 2

2) The selection criterion

Corrélation between the selection criterion and the genetic value

Selection criterion = EBV $\rightarrow R = [Rep]^{\frac{1}{2}}$

3) The selection presure

Selection intensity:

i = standardised differential = S / EBVs standard deviation

Chapter IV, Figure 10 and Table 11

4) The duration of the process

From one generation to the other: Generation intervall T = Average age difference between parents and offspring

Prediction of the annual genetic gain

The consticution and its personators

- The genetic gain and its parameters
- Comparison of the different selection methods
- The multiple trait selection
- Selection programmes
- Summary

Mass selection

- individual selection, phenotypic selection -

Pedigree selection

Progeny testing

Average performance of a small sample of offspring

i	R	T
	+++	

Main advantages:

High accuracy, overcomes the limits of mass selection

Limits:

Largely delays the selection decision Requires a strong organisation and induces high costs

Conclusion:

Used only when a high accuracy is necessary (AI males, ...) after a first selection with other methods

Family selection

Average performance of sibs (full- and half-sibs)

Main advantages:

Overcomes the limits of mass selection, with no delay

Limits:

Potential common environment within a family

Conclusion:

Complement to mass selection, species with large families

Complementary use of selection methods

In practice,

different informations and different selection methods

are combined

	Dairy AI bulls	Boars	Cocks Laying hen strains
Pedigree (mating to procreate candidates)	X	X	X
Own performance	Growth Sexual function	Growth, Muscle dev ^{nt}	₹. M
Sibs		Growth, Muscle dev ^{nt} Meat quality	Egg production
Offspring (Progeny testing)	Dairy traits Fonctional traits		

- The genetic gain and its parameters
- Comparison of the different selection methods
- The multiple trait selection
- Selection programmes
- Summary

Why to select several traits simultaneously

1) Concrete need to improve several traits for a given production

Meat production:

- Maternal traits: fertility, litter size, maternal behavior, ...
- Growth, muscle or fat content of the carcass

Milk production:

- Dairy traits
- Functional traits: fertility, disease resistance, morphology, longevity

2) Correlated responses, which may be defavourable due to negative correlations between traits

Correlated response to selection

The example of egg production

Prediction of the correlated response

When selecting on a single trait, one can predict the correlated response on any trait

The correlated is proportional to:

- The genetic correlation between both traits
- The expected genetic progress on the selected trait

$$E(\Delta G_2 | \Delta G_1) = r_{A[1,2]} \frac{\sigma_{A_2}}{\sigma_{A_1}} \Delta G_1$$

Methods for selecting two traits simultaneously

Independent thresholds

Linear Index

Comparison of the two methods

Independent thresholds

- More easy to apply
- Allows to make successive cullings
 - \rightarrow it is not necessary to evaluate all candidates for all traits
- Well suited when the different information are available at successive steps in the life of the animals

Linear index

- More efficient from a genetic point of view
- Requires that all candidates are evaluated for all traits
- More difficult to apply and more costly

In both cases: need for a clear hierarchy between traits

- To fix the different thresholds
- To fix the weights puted on the different traits

- The genetic gain and its parameters
- Comparison of the different selection methods
- The multiple trait selection
- Selection programmes
- Summary

Different steps of a selection programme

The use of the reproducing animals

The example of the AI bulls in dairy cattle

Realised genetic gain - dairy cattle in France -

The use of the reproducing animals

Summary

The efficiency of seelction depends on parameters on which some constraints exist

Interest of combining different selection methods (or different information for genetic evaluation)

It is possible to select simultaneously for several traits

Using reproducing animals: recycling and diffusion of $\Delta \boldsymbol{G}$

Usefulness of an organisation of selection

